Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2310409121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38427603

RESUMEN

Ovarian immature teratomas (OITs) are malignant tumors originating from the ovarian germ cells that mainly occur during the first 30 y of a female's life. Early age of onset strongly suggests the presence of susceptibility gene mutations for the disease yet to be discovered. Whole exon sequencing was used to screen pathogenic mutations from pedigrees with OITs. A rare missense germline mutation (C262T) in the first exon of the BMP15 gene was identified. In silico calculation suggested that the mutation could impair the formation of mature peptides. In vitro experiments on cell lines confirmed that the mutation caused an 84.7% reduction in the secretion of mature BMP15. Clinical samples from OIT patients also showed a similar pattern of decrease in the BMP15 expression. In the transgenic mouse model, the spontaneous parthenogenetic activation significantly increased in oocytes carrying the T allele. Remarkably, a mouse carrying the T allele developed the phenotype of OIT. Oocyte-specific RNA sequencing revealed that abnormal activation of the H-Ras/MAPK pathway might contribute to the development of OIT. BMP15 was identified as a pathogenic gene for OIT which improved our understanding of the etiology of OIT and provided a potential biomarker for genetic screening of this disorder.


Asunto(s)
Mutación Missense , Teratoma , Humanos , Femenino , Ratones , Animales , Mutación de Línea Germinal , Oocitos/fisiología , Ovario , Proteína Morfogenética Ósea 15/genética , Teratoma/genética
2.
Reprod Sci ; 31(3): 840-850, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37848645

RESUMEN

Unexpected poor ovarian response (UPOR) occurs when nine or fewer oocytes are retrieved from a young patient with normal ovarian reserve. Bone morphogenetic protein15 (BMP15) and growth differentiation factor 9 (GDF9) are two oocyte-specific factors with pivotal role in folliculogenesis. The aim of this study was to assess the relation between BMP15 and GDF9 variants with UPOR. Hundred women aged ≤ 39 with AMH ≥ 1.27 IU/ml participated as UPOR and normal ovarian responders (NOR) based on their oocyte number. Each group consisted of 50 patients. After genomic DNA extraction, the entire exonic regions of BMP15 and GDF9 were amplified and examined by direct sequencing. Western blotting was performed to determine the expression levels of BMP15 and GDF9 in follicular fluid. Additionally, in silico analysis was applied to predict the effect of discovered mutations. From four novel variants of BMP15 and GDF9 genes, silent mutations (c.744 T > C) and (c.99G > A) occurred in both groups, whereas missense variants: c.967-968insA and c.296A > G were found exclusively in UPORs. The latter variants caused reduction in protein expression. Moreover, the mutant allele (T) in a GDF9 polymorphism (C447T) found to be more in NOR individuals (58% NOR vs. 37% UPOR (OR = 2.3, CI 1.32-4.11, p = 0.004).The novel missense mutations which were predicted as damaging, along with other mutations that happened in UPORs might result in ovarian resistance to stimulation. The mutant allele (T) in C447T polymorphism has a protective effect. It can be concluded that there is an association between BMP15 and GDF9 variants and follicular development and ovarian response.


Asunto(s)
Proteína Morfogenética Ósea 15 , Factor 9 de Diferenciación de Crecimiento , Humanos , Femenino , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Ovario/metabolismo , Oocitos/metabolismo , Líquido Folicular/metabolismo
3.
Sci Rep ; 13(1): 22428, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104237

RESUMEN

Bone morphogenetic protein (BMP15) and growth differentiation factor (GDF9) are critical for ovarian follicular development and fertility and are associated with litter size in mammals. These proteins initially exist as pre-pro-mature proteins, that are subsequently cleaved into biologically active forms. Thus, the molecular forms of GDF9 and BMP15 may provide the key to understanding the differences in litter size determination in mammals. Herein, we compared GDF9 and BMP15 forms in mammals with high (pigs) and low to moderate (sheep) and low (red deer) ovulation-rate. In all species, oocyte lysates and secretions contained both promature and mature forms of BMP15 and GDF9. Whilst promature and mature GDF9 levels were similar between species, deer produced more BMP15 and exhibited, together with sheep, a higher promature:mature BMP15 ratio. N-linked glycosylation was prominant in proregion and mature GDF9 and in proregion BMP15 of pigs, and present in proregion GDF9 of sheep. There was no evidence of secreted native homo- or hetero-dimers although a GDF9 dimer in red deer oocyte lysate was detected. In summary, GDF9 appeared to be equally important in all species regardless of litter size, whilst BMP15 levels were highest in strict monovulatory species.


Asunto(s)
Proteína Morfogenética Ósea 15 , Factor 9 de Diferenciación de Crecimiento , Tamaño de la Camada , Animales , Femenino , Embarazo , Proteína Morfogenética Ósea 15/genética , Ciervos , Fertilidad , Factor 9 de Diferenciación de Crecimiento/genética , Oocitos/metabolismo , Ovulación , Ovinos , Porcinos
4.
PLoS Genet ; 19(9): e1010954, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37713421

RESUMEN

As an oocyte-specific growth factor, bone morphogenetic protein 15 (BMP15) plays a critical role in controlling folliculogenesis. However, the mechanism of BMP15 action remains elusive. Using zebrafish as the model, we created a bmp15 mutant using CRISPR/Cas9 and demonstrated that bmp15 deficiency caused a significant delay in follicle activation and puberty onset followed by a complete arrest of follicle development at previtellogenic (PV) stage without yolk accumulation. The mutant females eventually underwent female-to-male sex reversal to become functional males, which was accompanied by a series of changes in secondary sexual characteristics. Interestingly, the blockade of folliculogenesis and sex reversal in bmp15 mutant could be partially rescued by the loss of inhibin (inha-/-). The follicles of double mutant (bmp15-/-;inha-/-) could progress to mid-vitellogenic (MV) stage with yolk accumulation and the fish maintained their femaleness without sex reversal. Transcriptome analysis revealed up-regulation of pathways related to TGF-ß signaling and endocytosis in the double mutant follicles. Interestingly, the expression of inhibin/activin ßAa subunit (inhbaa) increased significantly in the double mutant ovary. Further knockout of inhbaa in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-) resulted in the loss of yolk granules again. The serum levels of estradiol (E2) and vitellogenin (Vtg) both decreased significantly in bmp15 single mutant females (bmp15-/-), returned to normal in the double mutant (bmp15-/-;inha-/-), but reduced again significantly in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-). E2 treatment could rescue the arrested follicles in bmp15-/-, and fadrozole (a nonsteroidal aromatase inhibitor) treatment blocked yolk accumulation in bmp15-/-;inha-/- fish. The loss of inhbaa also caused a reduction of Vtg receptor-like molecules (e.g., lrp1ab and lrp2a). In summary, the present study provided comprehensive genetic evidence that Bmp15 acts together with the activin-inhibin system in the follicle to control E2 production from the follicle, Vtg biosynthesis in the liver and its uptake by the developing oocytes.


Asunto(s)
Proteína Morfogenética Ósea 15 , Inhibinas , Proteínas de Pez Cebra , Pez Cebra , Animales , Femenino , Masculino , Activinas/genética , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Inhibinas/genética , Inhibinas/metabolismo , Mutación , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
J Assist Reprod Genet ; 40(8): 1973-1982, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37455267

RESUMEN

PURPOSE: The BMPR1B and BMP15 genes are well known for their considerable associations with prolificacy in sheep. These genes may also affect fertility or prolificacy in other species, including human. This study was conducted to investigate possible causative mutations in BMPR1B and BMP15 genes in human and an indigenous breed of sheep. METHODS: Blood samples were collected from 83 singleton- and prolific Mehraban ewes and 81 infertile, singleton- and twin-bearing women. A 190-bp fragment, containing the FecB mutation in ovine BMPR1B, a 380-bp fragment in ovine BMP15 gene and their homologous fragments in human were amplified and then investigated by single-stranded conformation polymorphism and DNA sequencing methods. RESULTS: The FecB mutation of BMPR1B (g.159A>G) was detected in the sheep population, but no polymorphic loci were found in the homologous fragment in studied human samples. The studied fragments of BMP15 were monomorphic in both sheep and human samples. A total of nine and 69 point-differences in the studied fragments of BMPR1B and BMP15 genes were detected between the species, respectively. In sheep, the G allele of BMPR1B had a positive effect on litter size (p<0.05), whereby all AG or GG ewes were prolific. CONCLUSION: The FecB mutation for the first time was detected in Mehraban sheep and therefore could be considered for marker-assisted selection in this breed. The studied fragments of BMPR1B and BMP15 genes are not responsible for reproduction variation in human. More studies on other genes, associated with fertility in human, are necessary in the future.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Fertilidad , Embarazo , Ovinos/genética , Humanos , Animales , Femenino , Mutación/genética , Fertilidad/genética , Tamaño de la Camada/genética , Alelos , Secuencia de Bases , Genotipo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Proteína Morfogenética Ósea 15/genética
6.
Genes (Basel) ; 14(5)2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37239462

RESUMEN

The Tibetan cashmere goat is a prolific goat breed in China. In sheep breeds, natural mutations have demonstrated that the transforming growth factor beta (TGF-ß) super family ligands, such as growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and their type I receptor (bone morphogenetic protein receptor (BMPR1B), are essential for ovulation and increasing litter size. In this study, 216 female Tibetan cashmere goats were sampled, and candidate genes with fecundity traits were detected via restriction fragment length polymorphism (RFLP) and sequenced. Four polymorphic loci were found in specific amplification fragments of BMP15 and GDF9. Two SNP sites of the BMP15 gene were discovered, namely G732A and C805G. The G732A mutation did not cause the change in amino acids, and the frequencies of each genotype were 0.695 for the GG type, 0.282 for the GA type and 0.023 for the AA type. The C805G mutation caused amino acids to change from glutamine to glutamate. The genotype frequencies were 0.620 for the CC type, 0.320 for the CG type and 0.320 for the CG type. For the GG type 0.060, the G3 and G4 mutations of the GDF9 gene were all homozygous mutations. Two known SNP sites, C719T and G1189A, were detected in the Tibetan cashmere goat GDF9 gene, of which the C719T mutation caused a change of alanine to valine, with a genotype frequency of 0.944 for the CC type and 0.056 for the CT type, whereas no TT type was found. The G1189A mutation caused valine to become isoleucine, and the frequencies of each genotype were 0.579 for the GG type, 0.305 for the GA type and 0.116 for the AA type; G1, B2, B3, B4, FecXH, FecXI, FecXL, G2, G5, G6, G7, G8, FecGE, FecTT and FecB mutations were not found in Tibetan cashmere goats. The results of this study provide a data basis for future studies of BMP15, GDF9 and BMPR1B gene mutations in goats.


Asunto(s)
Proteína Morfogenética Ósea 15 , Factor 9 de Diferenciación de Crecimiento , Animales , Ovinos/genética , Femenino , Proteína Morfogenética Ósea 15/genética , Factor 9 de Diferenciación de Crecimiento/genética , Cabras/genética , Tibet , Aminoácidos
7.
Life Sci ; 326: 121795, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230376

RESUMEN

AIMS: Phytoestrogens can act as natural estrogens owing to their structural similarity to human estrogens. Biochanin-A (BCA) is a well-studied phytoestrogen with a wide variety of pharmacological activities, whereas not reported in the most frequently encountered endocrinopathy called polycystic ovary syndrome (PCOS) in women. PURPOSE: This study aimed to investigate the therapeutic effect of BCA on dehydroepiandrosterone (DHEA) induced PCOS in mice. MAIN METHODS: Thirty-six female C57BL6/J mice were divided into six groups: sesame oil, DHEA-induced PCOS, DHEA + BCA (10 mg/kg/day), DHEA + BCA (20 mg/kg/day), DHEA + BCA (40 mg/kg/day), and metformin (50 mg/kg/day). KEY FINDINGS: The results showed a decrease in obesity, elevated lipid parameters, restoration of hormonal imbalances (testosterone, progesterone, estradiol, adiponectin, insulin, luteinizing hormone, and follicle-stimulating hormone), estrus irregular cyclicity, and pathological changes in the ovary, fat pad, and liver. SIGNIFICANCE: In conclusion, BCA supplementation inhibited the over secretion of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) and upregulated TGFß superfamily markers such as GDF9, BMP15, TGFßR1, and BMPR2 in the ovarian milieu of PCOS mice. Furthermore, BCA reversed insulin resistance by increasing circulating adiponectin levels through a negative correlation with insulin levels. Our results indicate that BCA attenuated DHEA-induced PCOS ovarian derangements, which could be mediated by the TGFß superfamily signaling pathway via GDF9 and BMP15 and associated receptors as first evidenced in this study.


Asunto(s)
Síndrome del Ovario Poliquístico , Animales , Femenino , Ratones , Adiponectina/metabolismo , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Deshidroepiandrosterona/uso terapéutico , Estrógenos/uso terapéutico , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Insulina/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
8.
Int J Biol Macromol ; 238: 124026, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36933589

RESUMEN

Bone morphogenetic protein 15 (BMP15) is specifically expressed in oocytes in pigs at all stages from early stages to ovulation and has an important role in oocyte maturation. However, there are few reports on the molecular mechanisms by which BMP15 affects oocyte maturation. In this study, we identified the core promoter region of BMP15 using a dual luciferase activity assay and successfully predicted the DNA binding motif of the transcription factor RUNX1. The effect of BMP15 and RUNX1 on oocyte maturation was examined using the first polar body extrusion rate, a reactive oxygen species (ROS) assay and total glutathione (GSH) content at three time points of 12, 24 and 48 h of in vitro culture of porcine isolated oocytes. Subsequently, the effect of the transcription factor RUNX1 on the TGF-ß signaling pathway (BMPR1B and ALK5) was further verified using RT-qPCR and Western blotting. We found that the overexpression of BMP15 significantly increased the first polar body extrusion rate (P < 0.01) and total glutathione content of oocytes cultured in vitro for 24 h and decreased reactive oxygen levels (P < 0.01), whereas interference with BMP15 decreased the first polar body extrusion rate (P < 0.01), increased reactive oxygen levels in oocytes cultured in vitro for 24 h (P < 0.01), and decreased glutathione content (P < 0.01). The dual luciferase activity assay and online software prediction showed that RUNX1 is a potential transcription factor binding to the core promoter region (-1203/-1423 bp) of BMP15. Overexpression of RUNX1 significantly increased the expression of BMP15 and oocyte maturation rate, while inhibition of RUNX1 decreased the expression of BMP15 and the oocyte maturation rate. Moreover, the expression of BMPR1B and ALK5 in the TGF-ß signaling pathway increased significantly after overexpression of RUNX1, whereas their expression decreased after inhibition of RUNX1. Overall, our results suggest that the transcription factor RUNX1 positively regulates the expression of BMP15 and influences oocyte maturation through the TGF-ß signaling pathway. This study provides a theoretical basis for further complementing the BMP15/TGF-ß signaling pathway to regulate mammalian oocyte maturation.


Asunto(s)
Proteína Morfogenética Ósea 15 , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Femenino , Animales , Porcinos , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Proteína Morfogenética Ósea 15/farmacología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/farmacología , Oocitos , Transducción de Señal , Glutatión/metabolismo , Oxígeno/metabolismo , Luciferasas/metabolismo , Mamíferos/metabolismo
9.
Biol Reprod ; 108(4): 611-618, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36648449

RESUMEN

Growth differentiation factor 9 (GDF9) is a secreted protein belonging to the transforming growth factor beta superfamily and has been well characterized for its role during folliculogenesis in the ovary. Although previous studies in mice and sheep have shown that mutations in GDF9 disrupt follicular progression, the exact role of GDF9 in pigs has yet to be elucidated. The objective of this study was to understand the role of GDF9 in ovarian function by rapidly generating GDF9 knockout (GDF9-/-) pigs by using the CRISPR/Cas9 system. Three single-guide RNAs designed to disrupt porcine GDF9 were injected with Cas9 mRNA into zygotes, and blastocyst-stage embryos were transferred into surrogates. One pregnancy was sacrificed on day 100 of gestation to investigate the role of GDF9 during oogenesis. Four female fetuses were recovered with one predicted to be GDF9-/- and the others with in-frame mutations. All four had fully formed oocytes within primordial follicles, confirming that knockout of GDF9 does not disrupt oogenesis. Four GDF9 mutant gilts were generated and were grown past puberty. One gilt was predicted to completely lack functional GDF9 (GDF9-/-), and the gilt never demonstrated standing estrus and had a severely underdeveloped reproductive tract with large ovarian cysts. Further examination revealed that the follicles from the GDF9-/- gilt did not progress past preantral stages, and the uterine vasculature was less extensive than the control pigs. By using the CRISPR/Cas9 system, we demonstrated that GDF9 is a critical growth factor for proper ovarian development and function in pigs.


Asunto(s)
Factor 9 de Diferenciación de Crecimiento , Folículo Ovárico , Animales , Femenino , Ratones , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Maduración Sexual , Ovinos , Porcinos
10.
Theriogenology ; 198: 241-249, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621133

RESUMEN

Bone morphogenetic protein 15 (BMP15) is an X-linked gene encoding an oocyte secreted factor, which plays varied functions in the female fertility between mono-ovulatory and poly-ovulatory mammalian species. We previously found that knockout of BMP15 completely blocked porcine follicular development at preantral stages. However, the specific function of BMP15 on porcine oocytes in vitro maturation remains largely unknown. Here, we injected the pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complex into the cytoplasm of germinal vesicle stage porcine oocytes to disrupt BMP15. The ctRNP composed of Cas9 nuclease and crRNA-tracrRNA complex at 1.2/1 content ratio. The tested crRNA-tracrRNA complex concentration ranging from 50 to 200 ng/µL, all presented effective editing of BMP15 in porcine oocytes, and the 125 ng/µL crRNA-tracrRNA complex presented the highest editing efficiency (39.23 ± 3.33%). Surprisingly, we found approximately 95% edited oocytes presented monoallelic mutations, and only 5% edited oocytes harbored biallelic mutations. Interestingly, the coinjected two crRNAs guided the ctRNP complex to concurrently cut within a 10 bp window of the PAM (protospacer adjacent motif), resulting in a precise deletion within BMP15 in 85.9% edited oocytes, and additional deletion happened in 14.1% edited oocytes, which resulted in large fragment deletions in BMP15. Most deletions caused frameshift and introduced premature stop codon in BMP15, resulting in the disruption of BMP15 protein expression, which was confirmed by the Western blot analysis showing the reduced BMP15 protein expression in ctRNP injected oocytes. The disruption of BMP15 attenuated the activation of SMAD1/5/8 signaling, and impaired cumulus expansion of porcine cumulus cell-oocyte complexes (COCs). Our study proved that delivering CRISPR ctRNP into porcine oocytes by microinjection was able to edit BMP15 efficiently, providing a new strategy to investigate the functions of oocyte-specific secreted factors in oocyte in vitro maturation.


Asunto(s)
Proteína Morfogenética Ósea 15 , Oocitos , Porcinos , Femenino , Animales , Proteína Morfogenética Ósea 15/genética , Microinyecciones/veterinaria , Oocitos/fisiología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Células del Cúmulo/fisiología , Mamíferos
11.
J Assist Reprod Genet ; 40(3): 567-576, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36689045

RESUMEN

PURPOSE: To analyze the level of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in follicle fluid (FF) and granulosa cells (GCs) derived from young patients with low prognosis for in vitro fertilization and embryo transfer (IVF-ET) treatment. METHODS: A prospective cohort study was carried out by enrolling 52 young patients with low prognosis according to the POSEIDON classification group 3 (low prognosis group) and 51 young patients with normal ovarian reserve (control group). The concentration of the GDF9 and BMP15 proteins in FF was determined by enzyme-linked immunosorbent assay. The mRNA level of the GDF9 and BMP15 in the GCs was measured by quantitative real-time PCR. RESULTS: The concentration of GDF9 (1026.72 ± 159.12 pg/mL vs. 1298.06 ± 185.41 pg/mL) and BMP15 (685.23 ± 143.91 pg/mL vs. 794.37 ± 81.79 pg/mL) in FF and the mRNA level of GDF9 and BMP15 in the GCs and the live birth rate per treatment cycle started (30.77% vs. 50.98%) and oocytes retrieved (4.25 ± 1.91 vs.12.04 ± 4.24) were significantly lower, whereas the canceled cycle rate was significantly higher (9.62% vs. 0) in the low prognosis group compared with the control group (P < 0.05). The expression of GDF9 and BMP15 in the ovary was positively correlated with live birth (P < 0.05). CONCLUSION: The expression of GDF9 and BMP15 in the ovary was decreased in young patients with low prognosis accompanied by a poorer outcome of IVF-ET treatment. TRIAL REGISTRATION: ChiCTR1800016107 (Chinese Clinical Trial Registry), May 11, 2018. ( http://www.chictr.org.cn/edit.aspx?pid=27216&htm=4 ).


Asunto(s)
Proteína Morfogenética Ósea 15 , Factor 9 de Diferenciación de Crecimiento , Animales , Femenino , Proteína Morfogenética Ósea 15/genética , Fertilización In Vitro , Células de la Granulosa/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Oocitos/metabolismo , Pronóstico , Estudios Prospectivos , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Trop Anim Health Prod ; 54(6): 350, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36260175

RESUMEN

Polymorphisms in growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) genes have been found to be associated with litter size in goats across the globe. Our previous study detected single-nucleotide polymorphisms (SNPs) in GDF9 and BMP15 genes associated with litter size in Black Bengal, Bangladesh's primary native goat breed. However, Jamunapari and crossbred goats in Bangladesh are yet to be investigated for litter size-associated polymorphisms. In this study, we screened Jamunapari and crossbred (50% Black Bengal × 50% Jamunapari) goats to identify polymorphisms in the GDF9 and BMP15 genes and to assess the association between identified SNPs and litter size. The genomic DNA from 100 female goats (50 Jamunapari and 50 crossbred) was used in polymerase chain reactions (PCRs) to amplify exon 2 of the GDF9 and exon 2 of the BMP15 genes. PCR products were sequenced employing the BigDye Terminator cycle sequencing protocol to identify SNPs. We used a generalized linear model to perform the association analysis for identified SNPs and litter size. Seven SNPs were identified, of which four, C818CT, G1073A, G1189A, and G1330T, were in the GDF9 gene and three, G616T, G735A, and G811A, were in the BMP15 gene. G735A was a synonymous SNP, whereas the remaining were non-synonymous SNPs. Identified SNP loci in GDF9 were low polymorphic (PIC < 0.25), while loci in BMP15 were moderately polymorphic (PIC ≥ 0.25). The genotypes at the G1330T locus had a significant (p < 0.05) difference in litter size in Jamunapari goats, but no significant difference was observed for all genotypes at other loci. Therefore, the G1330T loci could be useful as a marker in marker-assisted selection for litter size traits in goats of Bangladesh.


Asunto(s)
Proteína Morfogenética Ósea 15 , Cabras , Factor 9 de Diferenciación de Crecimiento , Animales , Femenino , Embarazo , Bangladesh , Proteína Morfogenética Ósea 15/genética , ADN , Cabras/genética , Factor 9 de Diferenciación de Crecimiento/genética , Tamaño de la Camada/genética , Polimorfismo de Nucleótido Simple
13.
Reprod Biol Endocrinol ; 20(1): 126, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986324

RESUMEN

BACKGROUND: The suggested effects of the oocyte secreted GDF9 and BMP15 growth factors on oocyte maturation are currently based on recombinant proteins, and little is known about native GDF9 and BMP15 in humans. METHODS: Human immature cumulus-oocyte complexes (COCs) obtained in connection with ovarian tissue cryopreservation (OTC) underwent in vitro maturation (IVM). Oocyte-produced GDF9 and BMP15 were detected in COCs using immunofluorescence, and in fresh GV oocytes and in GV and MII oocytes after IVM by western blot. Concentrations of GDF9, BMP15 homodimers, and GDF9/BMP15 heterodimer in spent media after IVM were measured by ELISA. The relative expression of seven genes from the GDF9 and BMP15 signaling pathways (BMPR2, ALK5, ALK6, SMAD1, SMAD2, SMAD3, and SMAD5) was evaluated in fresh cumulus cells (before IVM) and in cumulus cells from GV and MII oocytes after IVM by RT-qPCR. RESULTS: We detected native pro-mature GDF9 and BMP15 in human oocytes with molecular weights (Mw) of 47 kDa and 43 kDa, respectively. Concentrations of GDF9 and BMP15 in spent media after IVM were detected in 99% and 64% of the samples, respectively. The GDF9/BMP15 heterodimer was detected in 76% of the samples. Overall, the concentration of GDF9 was approximately 10-times higher than BMP15. The concentrations of both GDF9 and BMP15 were significantly lower in spent medium from MII oocytes than in media from oocytes that remained at the GV stage. Concentrations of the GDF9/BMP15 heterodimer did not differ between GV and MII oocytes. Furthermore, BMPR2, SMAD3, and SMAD5 were significantly upregulated in cumulus cells from MII oocytes, indicating that both GDF9 and BMP15 signaling were active during oocyte meiotic resumption in vitro. CONCLUSION: These data suggest that the driving mechanisms for oocyte nuclear maturation may involve both GDF9 and BMP15 homodimers, while the role of the GDF9/BMP15 heterodimer is questionable.


Asunto(s)
Factor 9 de Diferenciación de Crecimiento , Oocitos , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Proteína Morfogenética Ósea 15/farmacología , Células del Cúmulo/metabolismo , Femenino , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Humanos , Técnicas de Maduración In Vitro de los Oocitos , Oocitos/metabolismo , Oogénesis , Transducción de Señal
14.
J Assist Reprod Genet ; 39(10): 2239-2247, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36044164

RESUMEN

OBJECTIVE: The purpose of this study was to explore the association of expression of cystic fibrosis transmembrane conductance regulator (CFTR) in cumulus cells (CCs) from mature oocytes with oocyte quality and embryonic development. METHODS: A total of 338 infertile women who underwent ovarian stimulation cycle of oocyte retrieval in Zhejiang University School of Medicine were retrospectively enrolled in this study. The relative mRNA expression levels of CFTR, bone morphogenetic protein 15 (BMP15), and growth differentiation factor 9 (GDF9) in CCs were detected by qPCR technology. ROC curve was applied for the diagnosis of oocyte maturation. The serum levels of anti-Müllerian hormone (AMH), E2, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and androstenedione were measured. Oocyte maturation rate, fertilization rate, cleavage rate, high-quality embryo formation rate, and implantation rate after embryo transfer were also determined. RESULTS: The mRNA expression levels of CFTR in CCs were significantly increased in metaphase II (MII) oocytes compared to that in metaphase I (MI) or germinal vesicle (GV) oocytes. The ROC curve analysis illustrated that CFTR mRNA expression could efficiently discriminate MII oocytes from MI or GV oocytes (AUC = 0.954), and revealed that 0.695 RQU is the optimal cut-off value for diagnosis. So the cut-off value of 2-ΔΔCT = 0.70 was used to divide the patients into two groups: low- (n = 114) and high-CFTR group (n = 224). The mRNA expression of CFTR in CCs was positively correlated with the antral follicular count (AFC), number of oocytes retrieved, number of MII oocytes, serum E2 level on hCG day, and BMP15 and GDF9 expression in CCs. Under continuous stimulation with the same dose of recombinant follicle-stimulating hormone (rFSH), the number of follicles, average recovered oocytes, recovered oocytes, MII oocytes, as well as the oocyte recovery rate, fertilization rate, oocyte cleavage rate, high-quality embryo formation rate, and implantation rate were decreased in patients with lower CFTR. CONCLUSIONS: This study suggests that CFTR expression in CCs is associated with the developmental potential of human oocytes.


Asunto(s)
Células del Cúmulo , Infertilidad Femenina , Embarazo , Femenino , Humanos , Células del Cúmulo/metabolismo , Proteína Morfogenética Ósea 15/genética , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Hormona Antimülleriana/genética , Hormona Antimülleriana/metabolismo , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Androstenodiona/metabolismo , Estudios Retrospectivos , Oocitos/metabolismo , Hormona Folículo Estimulante , Hormona Luteinizante/metabolismo , Desarrollo Embrionario , ARN Mensajero/metabolismo
15.
Reprod Biomed Online ; 45(4): 727-729, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781182

RESUMEN

RESEARCH QUESTION: Does a genetic condition underlie the diagnosis of primary ovarian insufficiency (POI) in a 13-year-old girl with primary amenorrhoea? DESIGN: A case report of a next-generation sequencing panel of 24 genes associated with syndromal and non-syndromal POI was conducted. RESULTS: A homozygous missense variant c.1076C>T, p.(Pro359Leu) in BMP15 was identified. CONCLUSIONS: The biallelic variant c.1076C >T, p.(Pro359Leu) in BMP15 is associated with primary ovarian failure.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Insuficiencia Ovárica Primaria , Adolescente , Femenino , Homocigoto , Humanos , Mutación Missense , Insuficiencia Ovárica Primaria/genética
16.
J Assist Reprod Genet ; 39(9): 2125-2134, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35861920

RESUMEN

BACKGROUND: Premature ovarian insufficiency (POI) occurs in women before the age of 40 years, accompanied by amenorrhea, hypoestrogenism, hypergonadotropinism, and infertility. The pathology of POI is complex and the molecular genetic mechanisms are poorly understood. Bone morphogenetic protein 15 (BMP15) plays a crucial role in oocyte maturation and follicular development through the activation of granulosa cells. Dysfunction of BMP15 causes ovarian dysgenesis and is related to POI. Identifying pathogenic variants contributes to revealing genetic mechanisms and making clinical diagnoses of POI. METHODS: The study involved two sisters diagnosed with POI. Whole-exome sequencing (WES) was performed to identify causative genes. Sanger sequencing was used to validate the mutations in patients with POI and members of the family with no clinical signs or symptoms. The effect of the novel mutations on the BMP15 structure was analyzed by PSIPRED. By over-expressing wild-type (WT) or mutant BMP15 plasmids in vitro, a functional study of the BMP15 mutant was conducted by real-time qPCR and western blotting. Through cocultivation with HEK293T cells, the effects of secreted BMP15 WT and variants on granulosa cell proliferation and apoptosis were detected through a cell counting kit-8 assay and flow cytometric analysis. RESULTS: We identified biallelic variants in BMP15, c.791G > A (p. R264Q) and c.1076C > T (p. P359L), in two siblings with POI. Both sisters carried the same biallelic variants, while the other female members of their family carried only one of them. Structural prediction showed that the variants have not affected the secondary structure of BMP15 but may change the conformation of water molecules around protein surfaces and thermal stability of BMP15. Real-time qPCR showed no significant difference in mRNA levels among WT and the two variants. Western blotting indicated a reduction in BMP15 expression with the c.791G > A and c.1076C > T variants compared to WT. Moreover, mutants 791G > A and 1076C > T impaired the function of secreted BMP15 in promoting granulosa cell proliferation and suppressing cell apoptosis caused by reactive oxygen species. CONCLUSIONS: This study identified novel biallelic variants, c.791G > A and c.1076C > T, of BMP15 in two siblings with POI. Both missense variants reduced the level of the BMP15 protein and impaired the function of BMP15 in promoting granulosa cell proliferation in vitro. Taken together, our findings provide a novel molecular genetic basis and potential pathogenesis of BMP15 variants in POI.


Asunto(s)
Proteína Morfogenética Ósea 15 , Insuficiencia Ovárica Primaria , Proteína Morfogenética Ósea 15/genética , Femenino , Células HEK293 , Humanos , Hermanos , Secuenciación del Exoma
17.
Reprod Biol Endocrinol ; 20(1): 42, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232444

RESUMEN

BACKGROUND: Bone morphogenetic protein 15 (BMP15) is expressed in oocytes and plays a crucial role in the reproduction of mono-ovulating species. In humans, BMP15 gene mutations lead to imperfect protein function and premature ovarian insufficiency. Here we investigated the BMP15 gene variants in a population of Iranian women with premature ovarian insufficiency. We conducted predictive bioinformatics analysis to further study the outcomes of BMP15 gene alterations. METHODS: Twenty-four well-diagnosed premature ovarian insufficiency cases with normal karyotype participated in this study. The entire coding sequence and exon-intron junctions of the BMP15 gene were analyzed by direct sequencing. In-silico analysis was applied using various pipelines integrated into the Ensembl Variant Effect Predictor online tool. The clinical interpretation was performed based on the approved guidelines. RESULTS: By gene screening of BMP15, we discovered p.N103K, p.A180T, and p.M184T heterozygous variants in 3 unrelated patients. The p.N103K and p.M184T were not annotated on gnomAD, 1000 Genome and/or dbSNP. These mutations were not identified in 800 Iranians whole-exome sequencing that is recorded on Iranom database. We identified the p.N103K variant in a patient with secondary amenorrhea at the age of 17, elevated FSH and atrophic ovaries. The p.M184T was detected in a sporadic case with atrophic ovaries and very high FSH who developed secondary amenorrhea at the age of 31. CONCLUSIONS: Here we newly identified p.N103K and p.M184T mutation in the BMP15 gene associated with idiopathic premature ovarian insufficiency. Both mutations have occurred in the prodomain region of protein. Despite prodomain cleavage through dimerization, it is actively involved in the mature protein function. Further studies elucidating the roles of prodomain would lead to a better understanding of the disease pathogenesis.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Insuficiencia Ovárica Primaria/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteína Morfogenética Ósea 15/química , Niño , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Irán/epidemiología , Persona de Mediana Edad , Mutación Missense , Insuficiencia Ovárica Primaria/epidemiología , Dominios Proteicos/genética , Secuenciación del Exoma/estadística & datos numéricos , Adulto Joven
18.
Braz J Biol ; 84: e256923, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35137843

RESUMEN

Naturally occurring mutations in morphogenetic protein 15 (BMP15) are associated with decreased ovulation rate (OR), litter size (LS), and sterility. It is of a great interest to elucidate BMP15 gene in Cholistani sheep breed to uplift socio-economic status and the knowledge of Cholistani sheep breeding in Southern Punjab, Pakistan. In our study, a total of 50 infertile Cholistani sheep aged between 2-6 years and having no blood relation were screened for BMP15 mutations. For this purpose, a high-quality DNA was extracted from the blood of sheep followed by primer designing, Polymerase Chain Reaction (PCR) amplification, DNA sequencing, and in silico analyses. Out of total 50 samples, 9 samples including case 1 (T3), case 2 (T8), case 3 (T17), case 4 (T22), case 5 (T25), case 6 (T33), case 7 (T40), case 8 (T44), and case 9 (T47) were found positive for a variety of already reported and novel BMP15 mutations. Further in silico analyses of the observed mutations have shown the functional impact of these mutations on different characteristics (molecular weight, theoretical PI, estimated half-life, instability index, sub-cellular localization, and 3D confirmation) of the encoded proteins, possibly altering the normal functionality. In a nutshell, findings of this study have confirmed the possible essential role of the BMP15 mutations in the infertility of the Cholistani sheep.


Asunto(s)
Proteína Morfogenética Ósea 15 , Infertilidad , Ovinos , Animales , Proteína Morfogenética Ósea 15/genética , Femenino , Infertilidad/veterinaria , Mutación , Ovulación , Pakistán , Ovinos/genética
19.
Theriogenology ; 182: 119-128, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35151001

RESUMEN

Sexual size dimorphism (SSD), characterized by the body size difference in different sexes, has been commonly announced in various species included mammals, birds, reptiles, and fishes. The endocrine factors in the gonads has been regarded to be involved in SSD. Two oocyte secreted factors-growth differentiation factor 9 (gdf9) and bone morphogenetic factor 15 (bmp15) has been shown to be differentially expressed in the gonad of Chinese tongue sole (Cynoglossus semilaevis), a typical marine fish demonstrating female-biased SSD. To figure out their possible roles in fish SSD, gdf9 and bmp15 of C. semilaevis were firstly cloned. The subsequently phylogenetic and structural analysis revealed that gdf9 and bmp15 were clustered with other fish species and both contained TGF-beta domain in the C-terminal. Furthermore, the temporal and spatial expression by qRT-PCR showed that gdf9 and bmp15 displayed the highest expression level in the female gonad. Moreover, the highest levels of gdf9 and bmp15 transcripts were both detected in the 1.5-year-old female gonad. The in situ hybridization and immunofluorescence experiments revealed that their mRNAs and proteins were both located in the oocyte. Based on the methylome data and bisulfite sequencing PCR, the lowest DNA methylation levels for gdf9 was observed in the female gonad, mainly distributed in the upstream and genebody regions. As for bmp15 gene, the methylation level of females in the genebody region, especially the exon 1, was higher than that of males and pseudomale, while the methylation level of females in the downstream was the lowest. Finally, knock-down of gdf9 siRNA in C. semilaevis ovarian cells resulted in the down-regulation of alk4 and tgfbr1, and up-regulation of bmpr2, smad8, and bmp15. Taken together, the female-gonad-biased expression of gdf9 and bmp15 may be partly attributed to their upstream or genebody DNA methylation status. Gdf9 might be involved in reproduction and growth regulation of C. semilaevis by affecting Smad signaling pathway. Further exploration for these two ovarian factors would be helpful to better understand C. semilaevis SSD.


Asunto(s)
Proteína Morfogenética Ósea 15 , Lenguado , Factor 9 de Diferenciación de Crecimiento , Animales , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Femenino , Lenguado/genética , Lenguado/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Masculino , Filogenia , Regiones Promotoras Genéticas
20.
J Ovarian Res ; 15(1): 11, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057828

RESUMEN

BACKGROUND: Melatonin, as a free radical scavenger exhibiting genomic actions, regulates the antioxidant genes expression and apoptosis mechanisms. In polycystic ovary syndrome (PCOS) patients, an imbalance between free radicals and antioxidants in follicular fluid leads to oxidative stress, aberrant folliculogenesis, and intrinsic defects in PCOS oocytes. In this experimental mouse model study, oocytes of PCOS and the control groups were cultured in different melatonin concentrations (10- 5, 10- 6, and 10- 7 M) to investigate the expression of oocyte maturation-related genes (Gdf9/Bmp15), antioxidant-related genes (Gpx1/Sod1), apoptotic biomarkers (Bcl2/Bax) and total intracellular ROS levels. RESULTS: Gdf9 and Bmp15, Gpx1 and Sod1 were up-regulated in PCOS and control oocytes cultured in all melatonin concentrations compared to those cultured in IVM basal medium (P < 0.05). A significant decrease in the total ROS level was observed in all groups cultured in the supplemented cultures. Melatonin increased Bcl2 and decreased Bax gene expression in PCOS and control oocytes compared to non-treated oocytes. CONCLUSIONS: Melatonin increased antioxidant gene expression and regulated the apoptosis pathway, effectively reducing the adverse effects of culture conditions on PCOS oocytes. Furthermore, it influenced the expression of oocyte maturation-related genes in PCOS, providing valuable support during the IVM process.


Asunto(s)
Antioxidantes/metabolismo , Melatonina/farmacología , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína Morfogenética Ósea 15/genética , Deshidroepiandrosterona/toxicidad , Modelos Animales de Enfermedad , Femenino , Glutatión Peroxidasa/genética , Factor 9 de Diferenciación de Crecimiento/genética , Técnicas de Maduración In Vitro de los Oocitos , Ratones , Oocitos/metabolismo , Oogénesis/genética , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1/genética , Proteína X Asociada a bcl-2/genética , Glutatión Peroxidasa GPX1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...